Part Number Hot Search : 
ST78L12 BAV99D 110CA CD410830 B20100C P43FB 015020 C100L
Product Description
Full Text Search
 

To Download ISL2815608 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
ISL28156, ISL28256
Data Sheet February 11, 2008 FN6154.4
39A Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
The ISL28156 and ISL28256 are micropower precision operational amplifiers optimized for single supply operation at 5V and can operated down to 2.4V. These devices feature an Input Range Enhancement Circuit (IREC), which enables them to maintain CMRR performance for input voltages greater than the positive supply. The input signal is capable of swinging 0.5V above a 5.0V supply (0.25 for a 2.5V supply) and to within 10mV from ground. The output operation is rail-to-rail. The 1/f corner of the voltage noise spectrum is at 1kHz. This results in low frequency noise performance, which can only be found on devices with an order of magnitude higher than the supply current. ISL28156 and ISL28256 can be operated from one lithium cell or two Ni-Cd batteries. The input range includes both positive and negative rail. The output swings to both rails.
Features
* 39A typical supply current * 5nA max input bias current * 250kHz gain bandwidth product (AV = 1) * 2.4V to 5.5V single supply voltage range * Rail-to-rail input and output * Enable pin (ISL28156 only) * Pb-free (RoHS compliant)
Applications
* Battery- or solar-powered systems * 4mA to 20mA current loops * Handheld consumer products * Medical devices * Sensor amplifiers * ADC buffers * DAC output amplifiers
Ordering Information
PART NUMBER (Note) ISL28156FHZ-T7* ISL28156FBZ ISL28156FBZ-T7* Coming Soon ISL28256FBZ Coming Soon ISL28256FBZ-T7* Coming Soon ISL28256FUZ Coming Soon ISL28256FUZ-T7* PART MARKING GABV 28156 FBZ 28156 FBZ 28256 FBZ 28256 FBZ 8256Z 8256Z PACKAGE (Pb-free) 6 Ld SOT-23 8 Ld SOIC 8 Ld SOIC 8 Ld SOIC 8 Ld SOIC 8 Ld MSOP 8 Ld MSOP PKG. DWG. # MDP0038 MDP0027 MDP0027 MDP0027 MDP0027 MDP0043 MDP0043
Pinouts
ISL28156 (6 LD SOT-23) TOP VIEW
OUT 1 V- 2 IN+ 3 6 V+ 5 ENABLE 4 INNC 1 IN- 2 IN+ 3 V- 4 +
ISL28156 (8 LD SOIC) TOP VIEW
8 ENABLE 7 V+ 6 OUT 5 NC
+-
*Please refer to TB347 for details on reel specifications. NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
OUT_A 1 IN-_A 2 IN+_A 3 V- 4
ISL28256 (8 LD SOIC) TOP VIEW
8 V+ -+ +7 OUT_B 6 IN-_B 5 IN+_B OUT_A 1 IN-_A 2 IN+_A 3 V- 4
ISL28256 (8 LD MSOP) TOP VIEW
8 V+ -+ +7 OUT_B 6 IN-_B 5 IN+_B
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright (c) Intersil Americas Inc. 2006, 2007, 2008. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.
ISL28156, ISL28256
Absolute Maximum Ratings (TA = +25C)
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/s Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V
Thermal Information
Thermal Resistance JA (C/W) 6 Ld SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . . 230 6 Ld SO Package . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . . 115 Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite Ambient Operating Temperature Range . . . . . . . . .-40C to +125C Storage Temperature Range . . . . . . . . . . . . . . . . . .-65C to +150C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications
V+ = 5V, V- = 0V,VCM = 2.5V, TA = +25C unless otherwise specified. Boldface limits apply over the operating temperature range, -40C to +125C. Temperature data established by characterization. DESCRIPTION CONDITIONS 8 Ld SOIC 6 Ld SOT-23 MIN (Note 1) -120 -200 -400 -450 TYP -7 -7 1.5 -1.5 -5 -2 -3.5 FO = 1kHz FO = 1kHz 0 VCM = 0V to 5V VS = 2.4V to 5V VO = 0.5V to 4.5V, RL = 100k VO = 0.5V to 4.5V, RL = 1k 80 75 90 75 200 175 35 30 110 104 412 70 3 130 4.992 4.99 4.85 4.8 4.985 4.88 0.05 AV = 1 29 18 250 39 47 56 6 8 150 200 0.34 1.14 46 0.14 5 1.2 2.5 5 5 MAX (Note 1) 120 250 400 450 UNIT V V V/C nA nA nV/Hz pA/Hz V dB dB V/mV V/mV mV mV V V V/s kHz A
PARAMETER VOS
Input Offset Voltage
V OS --------------T IOS IB EN IN CMIR CMRR PSRR AVOL
Input Offset Drive vs Temperature Input Offset Current Input Bias Current Input Noise Voltage Density Input Noise Current Density Input Common-Mode Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large Signal Voltage Gain
VOUT
Maximum Output Voltage Swing
Output low, RL = 100k Output low, RL = 1k Output high, RL = 100k Output high, RL = 1k
SR GBW IS,ON
Slew Rate Gain Bandwidth Product Supply Current, Enabled
2
FN6154.4 February 11, 2008
ISL28156, ISL28256
Electrical Specifications
V+ = 5V, V- = 0V,VCM = 2.5V, TA = +25C unless otherwise specified. Boldface limits apply over the operating temperature range, -40C to +125C. Temperature data established by characterization. (Continued) DESCRIPTION Supply Current, Disabled Short-Circuit Output Current Short-Circuit Output Current Supply Operating Range Enable Pin High Level Enable Pin Low Level Enable Pin Input Current Enable Pin Input Current Enable to Output On-state Delay Time (ISL28156) Enable to Output Off-state Delay Time (ISL28156) VEN = 5V VEN = 0V VOUT = 1V (enable state); VEN = High to Low VOUT = 0V (disabled state) VEN = Low to High 0.7 10 1 16 10.8 0.1 RL = 10 RL = 10 Guaranteed by PSRR test 28 23 24 18 2.4 2 0.8 1.2 1.2 25 30 CONDITIONS MIN (Note 1) TYP 10 31 26 5 MAX (Note 1) 14 16 UNIT A mA mA V V V A nA s s
PARAMETER IS,OFF IO+ IOVSUPPLY VENH VENL IENH IENL tEN tEN NOTE:
1. Parts are 100% tested at +25C. Temperature limits established by characterization and are not production tested.
Typical Performance Curves
3 2 NORMALIZED GAIN (dB) 1 0 -1 -2 -3 -4 -5 -6 -7 -8 AV = 1 CL = 16.3pF VOUT = 10mVP-P 1k 10k 100k FREQUENCY (Hz) 1M RL = 10k RL = 100k NORMALIZED GAIN (dB) RL = 1k 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 CL = 63.3pF CL = 55.3pF CL = 49.3pF CL = 43.3pF CL = 38.3pF CL = 34.3pF AV = 1 RL = 10k VOUT = 10mVP-P 1k 10k 100k FREQUENCY (Hz) 1M
FIGURE 1. GAIN vs FREQUENCY vs RL
70 60 50 GAIN (dB) 40 30 20 10 0 Rf = 0, Rg = INF, RL = 10k -10 100 1k 10k FREQUENCY (Hz) 100k 1M Rf = 9.09, Rg = 1k, RL = INF Rf = 1M, Rg = 1k, RL = 10k 1 RL = 10k CL = 16.3pF VOUT = 10mVP-P 0 NORMALIZED GAIN (dB) -1 -2 -3 -4 -5 -6
FIGURE 2. GAIN vs FREQUENCY vs CL
VS = 2.4V VS = 5V
Rf = 100k, Rg = 1k, RL = 10k
AV = 1 RL = 10k -8 VOUT = 10mVP-P -9 1k 10k -7
100k
1M
FREQUENCY (Hz)
FIGURE 3. CLOSED LOOP GAIN vs FREQUENCY
FIGURE 4. GAIN vs FREQUENCY vs VS
3
FN6154.4 February 11, 2008
ISL28156, ISL28256 Typical Performance Curves (Continued)
3 2 NORMALIZED GAIN (dB) 1 0 -1 -2 -3 -4 -5 -6 -7 -8 1k AV = 1 RL = 1k CL = 16.3pF 10k 100k 1M FREQUENCY (Hz) VOUT = 1V VOUT = 100mV VOUT = 10mV NORMALIZED GAIN (dB) VOUT = 50mV 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 AV = 1 RL = 10k CL = 16.3pF 1k 10k VOUT = 50mV VOUT = 100mV 100k 1M VOUT = 1V VOUT = 10mV
FREQUENCY (Hz)
FIGURE 5. GAIN vs FREQUENCY vs VOUT
FIGURE 6. GAIN vs FREQUENCY vs VOUT
1 0 NORMALIZED GAIN (dB) -1 -2 -3 -4 -5 -6 -7 -8 -9 1k AV = 1 RL = 100k CL = 16.3pF 10k VOUT = 1V
VOUT = 10mV
10 0 -10 AV = 1 RL = 10k CL = 16.3pF VCM = 1VPP P-P
VS = 2.4V
VOUT = 50mV
CMRR (dB)
-20 -30 -40 -50 -60 VS = 5V
VOUT = 100mV
100k
1M
-70
100
1k
10k FREQUENCY (Hz)
100k
1M
FREQUENCY (Hz)
FIGURE 7. GAIN vs FREQUENCY vs VOUT
FIGURE 8. CMRR vs FREQUENCY
10 0 -10 PSRR (dB) -20 -30 -40 -50 -60 -70 -80 100 1k 10k FREQUENCY (Hz) 100k 1M PSRR+ AV = 1 RL = 1k CL = 16.3pF VOUT = 1VP-P VS = 2.4V
10 0 PSRRPSRR (dB) -10 -20 -30 -40 -50 -60 -70 -80 -90 100 1k 10k FREQUENCY (Hz) 100k 1M PSRR+ AV = 1 RL = 1k CL = 16.3pF VOUT = 1VP-P VS = 5V
PSRR-
FIGURE 9. PSRR vs FREQUENCY, VS = 2.4V
FIGURE 10. PSRR vs FREQUENCY, VS = 5V
4
FN6154.4 February 11, 2008
ISL28156, ISL28256 Typical Performance Curves (Continued)
160 140 120 100 80 60 40 20 0 1 10 100 FREQUENCY (Hz) 1k 10k INPUT CURRENT NOISE (pA/Hz) INPUT VOLTAGE NOISE (nV/Hz) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 1 10 100 FREQUENCY (Hz) 1k 10k
FIGURE 11. INPUT VOLTAGE NOISE vs FREQUENCY
FIGURE 12. INPUT CURRENT NOISE vs FREQUENCY
0 -0.2 INPUT NOISE (V) -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 0
SMALL SIGNAL (mV)
AV = 1000 RF = 100k Ri = 100 RL = 10k
24 22 20 18 16 14 12 RF = Ri = RL = 10k AV = 2 CL = 16.3pF VOUT = 10mVP-P
1
2
3
4
5 TIME (s)
6
7
8
9
10
10
0
50
100
150
200 TIME (s)
250
300
350
400
FIGURE 13. 1Hz TO 10Hz INPUT NOISE
FIGURE 14. SMALL SIGNAL STEP RESPONSE
0.6 0.4 LARGE SIGNAL (V) 0.2 0 -0.2 -0.4 -0.6 RF = Ri = RL = 10k AV = 2 CL = 16.3pF VOUT = 1VP-P 0 100 200 TIME (s) 300 400
6 5 4 ENABLE (V) 3 2 1 0 -1 VOUT 0 10 20 30 40 50 60 70 80 90 TIME (s) V-ENABLE
1.2 1.0 0.8 RF = Ri =RL = 10k AV = 2 CL = 16.3pF VOUT = 10mVP-P 0.6 0.4 0.2 0 -0.2 100 OUTPUT (V)
FIGURE 15. LARGE SIGNAL STEP RESPONSE
FIGURE 16. ENABLE TO OUTPUT DELAY
5
FN6154.4 February 11, 2008
ISL28156, ISL28256 Typical Performance Curves (Continued)
58 53 CURRENT (A) CURRENT (A) 48 43 38 33 MIN 28 23 -40 MEDIAN n = 1000 14.5 MAX 13.5 12.5 11.5 10.5 9.5 8.5 7.5 -20 0 20 40 60 80 100 120 6.5 -40 -20 0 20 40 60 MIN 80 100 120 MEDIAN n = 1000 MAX
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 17. SUPPLY CURRENT ENABLED vs TEMPERATURE VS = 2.5V
FIGURE 18. SUPPLY CURRENT DISABLED vs TEMPERATURE VS = 2.5V
380 n = 1000 280 180 VIO (V) VIO (V) 80 -20 -120 -220 -320 -420 -40 MIN MEDIAN MAX
400 n = 1000 300 200 100 0 -100 -200 -300 -400 -40 -20 0 20 40 MIN MEDIAN MAX
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
60
80
100
120
TEMPERATURE (C)
FIGURE 19. VIO SO8 PACKAGE vs TEMPERATURE VS = 2.5V
FIGURE 20. VIO SO8 PACKAGE vs TEMPERATURE VS = 1.2V
380 280 n = 1000 180 VIO (V) VIO (V) 80 -20 -120 -220 -320 -420 -40 MIN MEDIAN MAX
400 300 200 100 0 -100 -200 -300 -400 -40 MIN MEDIAN n = 1000 MAX
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 21. VIO SOT-23 PACKAGE vs TEMPERATURE VS = 2.5V
FIGURE 22. VIO SOT-23 PACKAGE vs TEMPERATURE VS = 1.2V
6
FN6154.4 February 11, 2008
ISL28156, ISL28256 Typical Performance Curves (Continued)
5 4 3 IBIAS+ (nA) 2 1 0 -1 -2 -3 -40 -20 0 20 MIN 0 -1 -40 MEDIAN MAX IBIAS- (nA) 3 2 1 MEDIAN n = 1000 5 4 MAX n = 1000
MIN
40
60
80
100
120
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 23. IBIAS+ vs TEMPERATURE VS = 2.5V
FIGURE 24. IBIAS- vs TEMPERATURE VS = 2.5V
2 1 0 -1 -2 -3 MIN -4 -40 -20 0 20 40 60 80 100 120 n = 1000 MAX IBIAS- (nA)
10 n = 1000 8 MAX 6 4 2 0 -2 MIN -4 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MEDIAN
IBIAS+ (nA)
MEDIAN
TEMPERATURE (C)
FIGURE 25. IBIAS+ vs TEMPERATURE VS = 1.5V
FIGURE 26. IBIAS- vs TEMPERATURE VS = 1.2V
4 3 2 1 IOS (nA) 0 -1 -2 -3 -4 -5
n = 1000 MAX
4 2 0 IOS (nA) -2 -4 -6 -8 MIN MEDIAN MAX
n = 1000
MEDIAN MIN
-6 -40
-20
0
20
40
60
80
100
120
-10
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 27. IOS vs TEMPERATURE VS = 2.5V
FIGURE 28. IOS vs TEMPERATURE VS = 1.5V
7
FN6154.4 February 11, 2008
ISL28156, ISL28256 Typical Performance Curves (Continued)
135 130 125 CMRR (dB) 120 115 110 105 100 95 90 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MIN MEDIAN n = 1000 MAX 130 125 120 PSRR (dB) 115 110 105 100 95 90 85 -40 -20 0 MIN 20 40 60 80 TEMPERATURE (C) 100 120 MEDIAN MAX n = 1000
FIGURE 29. CMRR vs TEMPERATURE V+ = 2.5V, 1.5V
FIGURE 30. PSRR vs TEMPERATURE 1.2V to 2.5V
4.900 4.895 4.890 4.885 4.880 4.875 4.870 4.865 4.860 4.855 4.850 -40 -20 0 20 40 60 80 TEMPERATURE (C) MIN MEDIAN MAX
n = 1000
4.9984 4.9982 4.9980 VOUT (V) 4.9978 4.9976 4.9974 4.9972 4.9970 MIN MEDIAN n = 1000 MAX
VOUT (V)
100
120
4.9968 -40
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 31. VOUT HIGH vs TEMPERATURE VS = 2.5V, RL = 1k
FIGURE 32. VOUT HIGH VS = 2.5V, RL = 100k
4.9984 4.9982 4.9980 VOUT (mV) VOUT (V) 4.9978 4.9976 4.9974 4.9972 4.9970 4.9968 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MIN MEDIAN MAX n = 1000
5.0 n = 1000 4.5 4.0 3.5 MEDIAN 3.0 MIN 2.5 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MAX
FIGURE 33. VOUT LOW VS = 2.5V, RL = 1k
FIGURE 34. VOUT LOW VS = 2.5V, RL = 100k
8
FN6154.4 February 11, 2008
ISL28156, ISL28256 Pin Descriptions
ISL28156 (6 Ld SOT-23) ISL28156 (8 Ld SOIC) 1, 5 4 2 2 (A) 6 (B) ISL28256 (8 Ld MSOP) PIN NAME NC ININ-_A IN-_B FUNCTION Not connected Inverting input
V+ IN-
EQUIVALENT CIRCUIT
IN+ VCircuit 1
3
3 3 (A) 5 (B)
IN+ IN+_A IN+_B VOUT OUT_A OUT_B
Non-inverting input Negative supply Output
(See Circuit 1)
2 1
4 6
4 1 (A) 7 (B)
V+
OUT
VCircuit 2
6 5
7 8
8
V+ ENABLE
Positive supply Chip enable
CE V+
VCircuit 3
Applications Information
Introduction
The ISL28156 is a single BiMOS rail-to-rail input, output (RRIO) operational amplifier with an enable feature. The ISL28256 is a dual version without the enable feature. Both devices are designed to operate from single supply (2.4V to 5.0V) or dual supplies (1.2V to 2.5V) while drawing only 39A of supply current per amplifier. This combination of low power and precision performance makes this device suitable for a variety of low power applications including battery powered systems.
Input Protection
All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. They also contain back-to-back diodes across the input terminals. For applications where the input differential voltage is expected to exceed 0.5V, external series resistors must be used to ensure the input currents never exceed 5mA (Figure 35).
VIN RIN + RL VOUT
Rail-to-Rail Input/Output
These devices feature bi-polar inputs, which have an input common mode range that extends up to 0.5V beyond the V+ rail, and to within 10mV of the V- rail. The CMOS outputs typically swing to within about 4mV of the supply rails with a 100k load. The NMOS sinks current to swing the output in the negative direction. The PMOS sources current to swing the output in the positive direction.
FIGURE 35. INPUT CURRENT LIMITING
Enable/Disable Feature
The ISL28156 offers an EN pin that disables the device when pulled up to at least 2.0V. In the disabled state (output in a high impedance state), the part consumes typically 10A. By disabling the part, multiple ISL28156 parts can be connected together as a MUX. In this configuration, the outputs are tied together in parallel and a channel can be selected by the EN
9
FN6154.4 February 11, 2008
ISL28156, ISL28256
pin. The EN pin also has an internal pull-down. If left open, the EN pin will pull to the negative rail and the device will be enabled by default. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together.
Power Dissipation
It is possible to exceed the +125C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:
T JMAX = T MAX + ( JA xPD MAXTOTAL ) (EQ. 1)
Using Only One Channel
The ISL28256 is a dual op amp. If the application only requires one channel, the user must configure the unused channel to prevent it from oscillating. The unused channel will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 36).
+
where: * PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) PDMAX for each amplifier can be calculated using Equation 2:
V OUTMAX PD MAX = 2*V S x I SMAX + ( V S - V OUTMAX ) x --------------------------R
L
(EQ. 2)
where:
FIGURE 36. PREVENTING OSCILLATIONS IN UNUSED CHANNELS
* TMAX = Maximum ambient temperature * JA = Thermal resistance of the package * PDMAX = Maximum power dissipation of 1 amplifier * VS = Supply voltage * IMAX = Maximum supply current of 1 amplifier * VOUTMAX = Maximum output voltage swing of the application * RL = Load resistance
Current Limiting
These devices have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.
10
FN6154.4 February 11, 2008
ISL28156, ISL28256 SOT-23 Package Family
e1 A N 6 4
MDP0038
D
SOT-23 PACKAGE FAMILY MILLIMETERS SYMBOL A A1 SOT23-5 1.45 0.10 1.14 0.40 0.14 2.90 2.80 1.60 0.95 1.90 0.45 0.60 5 SOT23-6 1.45 0.10 1.14 0.40 0.14 2.90 2.80 1.60 0.95 1.90 0.45 0.60 6 TOLERANCE MAX 0.05 0.15 0.05 0.06 Basic Basic Basic Basic Basic 0.10 Reference Reference Rev. F 2/07 NOTES:
E1 2 3
E
A2 b c
0.20 C
0.15 C D 2X 5 e B b NX 1 2 3 2X 0.20 M C A-B D
D E E1 e e1 L L1 N
0.15 C A-B 2X C D
1
3
A2 SEATING PLANE 0.10 C NX A1
1. Plastic or metal protrusions of 0.25mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25mm maximum per side are not included. 3. This dimension is measured at Datum Plane "H". 4. Dimensioning and tolerancing per ASME Y14.5M-1994. 5. Index area - Pin #1 I.D. will be located within the indicated zone (SOT23-6 only).
(L1)
H
6. SOT23-5 version has no center lead (shown as a dashed line).
A
GAUGE PLANE c L 0 +3 -0
0.25
11
FN6154.4 February 11, 2008
ISL28156, ISL28256 Small Outline Package Family (SO)
A D N (N/2)+1 h X 45
A E E1 PIN #1 I.D. MARK c SEE DETAIL "X"
1 B
(N/2) L1
0.010 M C A B e C H A2 GAUGE PLANE A1 0.004 C 0.010 M C A B b DETAIL X
SEATING PLANE L 4 4
0.010
MDP0027
SMALL OUTLINE PACKAGE FAMILY (SO) INCHES SYMBOL A A1 A2 b c D E E1 e L L1 h N NOTES: 1. Plastic or metal protrusions of 0.006" maximum per side are not included. 2. Plastic interlead protrusions of 0.010" maximum per side are not included. 3. Dimensions "D" and "E1" are measured at Datum Plane "H". 4. Dimensioning and tolerancing per ASME Y14.5M-1994 SO-8 0.068 0.006 0.057 0.017 0.009 0.193 0.236 0.154 0.050 0.025 0.041 0.013 8 SO-14 0.068 0.006 0.057 0.017 0.009 0.341 0.236 0.154 0.050 0.025 0.041 0.013 14 SO16 (0.150") 0.068 0.006 0.057 0.017 0.009 0.390 0.236 0.154 0.050 0.025 0.041 0.013 16 SO16 (0.300") (SOL-16) 0.104 0.007 0.092 0.017 0.011 0.406 0.406 0.295 0.050 0.030 0.056 0.020 16 SO20 (SOL-20) 0.104 0.007 0.092 0.017 0.011 0.504 0.406 0.295 0.050 0.030 0.056 0.020 20 SO24 (SOL-24) 0.104 0.007 0.092 0.017 0.011 0.606 0.406 0.295 0.050 0.030 0.056 0.020 24 SO28 (SOL-28) 0.104 0.007 0.092 0.017 0.011 0.704 0.406 0.295 0.050 0.030 0.056 0.020 28 TOLERANCE MAX 0.003 0.002 0.003 0.001 0.004 0.008 0.004 Basic 0.009 Basic Reference Reference NOTES 1, 3 2, 3 Rev. M 2/07
12
FN6154.4 February 11, 2008
ISL28156, ISL28256 Mini SO Package Family (MSOP)
0.25 M C A B D N A (N/2)+1
MDP0043
MINI SO PACKAGE FAMILY MILLIMETERS SYMBOL A A1 MSOP8 1.10 0.10 0.86 0.33 0.18 3.00 4.90 3.00 0.65 0.55 0.95 8 MSOP10 1.10 0.10 0.86 0.23 0.18 3.00 4.90 3.00 0.50 0.55 0.95 10 TOLERANCE Max. 0.05 0.09 +0.07/-0.08 0.05 0.10 0.15 0.10 Basic 0.15 Basic Reference NOTES 1, 3 2, 3 Rev. D 2/07 NOTES: 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
E
E1
PIN #1 I.D.
A2 b c
B
1 (N/2)
D E E1
e C SEATING PLANE 0.10 C N LEADS b
H
e L L1 N
0.08 M C A B
L1 A c SEE DETAIL "X"
2. Plastic interlead protrusions of 0.25mm maximum per side are not included. 3. Dimensions "D" and "E1" are measured at Datum Plane "H". 4. Dimensioning and tolerancing per ASME Y14.5M-1994.
A2 GAUGE PLANE L DETAIL X
0.25
A1
3 3
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com 13
FN6154.4 February 11, 2008


▲Up To Search▲   

 
Price & Availability of ISL2815608

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X